Pressure machining of titanium alloys is more similar to steel machining than to non-ferrous metals and alloys. Many process parameters of titanium alloys in forging, volume stamping, and sheet stamping are close to those in steel processing. But there are some important features that must be paid attention to when pressing working titanium and titanium alloys.
While it is generally believed that the hexagonal lattices contained in titanium and titanium alloys are less ductile when deformed, various press-working methods used for other structural metals are also applicable to Titanium Alloy Seamless Rectangular Tube. The ratio of yield point to strength limit is one of the characteristic indicators of whether the metal can withstand plastic deformation. The larger this ratio, the worse the plasticity of the metal. For industrially pure titanium in the cooled state, the ratio is 0.72-0.87, compared to 0.6-0.65 for carbon steel and 0.4-0.5 for stainless steel.
Volume stamping, free forging, and other operations related to machining large cross-sections and large-size blanks are carried out in the heated state (above the =μS transition temperature). The temperature range of forging and stamping heating is between 850-1150°C. Alloys BT; M)0, BT1-0, OT4~0 and OT4-1 have satisfactory plastic deformation in the cooling state. Therefore, the parts made of these alloys are mostly made of intermediate annealed blanks without heating and stamping. When the titanium alloy is cold plastically deformed, regardless of its chemical composition and mechanical properties, the strength will be greatly improved, and the plasticity will be correspondingly reduced. For this reason, annealing treatment between processes must be performed.
没有评论:
发表评论