The capillary titanium alloy tube is atomized by pyrogen and the granules in the molten state are severely attacked at a high speed to the surface of the cleaned and unsmooth substrate to produce the required coating. The moment the particles hit the surface of the substrate hard, it will be deformed, and with the help of the "England" effect, a coating with a lamellar structure is produced. With many "overlapping continuous accumulation" of plastic deformation particles, the fusion between particles should be mostly mechanical equipment, and there must be a certain number of holes. In addition, if painting is carried out in the air, there is likely to be metal in the coating. Mixed oxides.
Titanium tubes are mainly used to make aero-engine compressor components, followed by rockets, cruise missiles and structural parts of high-speed airports. In the middle and late 1960s, titanium and aluminum alloys have been used in general industrial production to make electric grades for electrolytic industrial production, coolers in power plants, electric heaters for crude oil refining and seawater desalination equipment and their air pollution. Manipulating equipment, etc. ASTM F136 6Al-4V ELI Titanium Bar and aluminum alloys have become a corrosion-resistant structural raw material. In addition, it is also used to produce hydrogen storage raw materials and shape memory alloys.
Capillary titanium alloy tube is a new key structural raw material used in aerospace industry production. Its proportion, compressive strength and application temperature are close to the middle of aluminum and steel, but it has high specific strength and excellent sea surface corrosion resistance and low temperature characteristics.