As a new type of manufacturing method, additive manufacturing (also known as 3D printing) has the advantages of fast manufacturing, saving materials, and user-customizable. It has attracted more and more attention in the fields of aviation, aerospace, automobiles, and medical equipment. Due to the needs of industrial applications, the fatigue performance of additive manufacturing materials (especially the ultra-high cycle fatigue performance) and the corresponding fatigue mechanism have become one of the scientific problems that need to be solved urgently in the research field of additive manufacturing.
The Research Group of Metallic Materials Microstructure and Mechanical Properties of the Institute of Mechanics, Chinese Academy of Sciences has recently carried out a series of research work on the fatigue characteristics of additively manufactured titanium alloys (Ti-6Al-4V). The research team conducted fatigue performance tests on additively manufactured titanium alloys and obtained the high-cycle and ultra-high-cycle fatigue properties of the material. Through the observation of the fatigue fracture, it is reported that the high-cycle and ultra-high-cycle fatigue cracks of the additive-manufactured titanium alloy all originate in the internal holes and unfused defects of the material, and form a new phenomenon of "fish-eye" fracture morphology. This is quite different from the fatigue characteristics and cracks initiation mechanism of traditional forged metal materials. According to the distribution characteristics of crack source size, a statistical correlation between fatigue performance and crack size is constructed. Based on the fatigue life data of the material and the size of the fatigue crack defect, a probability statistical P-S-N analysis was carried out to obtain the relationship between the high-cycle and ultra-high-cycle fatigue failure probability of the material, the fatigue life, and the applied load. In addition, in order to further explore the characteristics of fatigue crack growth, the research team used an in-situ fatigue loading device to obtain Ti-6Al-4V crack growth rates at different temperatures and different preparation orientations, revealing the fatigue crack growth of titanium alloys with different orientations. Mechanisms.
This research not only provides effective fatigue performance data for engineering applications of additive manufacturing of titanium alloys. At the same time, it has laid a theoretical foundation for exploring the crack initiation and propagation mechanism of additive manufacturing of titanium alloys.
Grade 23 Titanium Wire Gr7 Ti-0.2Pd Titanium Sheet ERTi-1 Pure Titanium Welding Wire titanium hexagon rod
Grade 23 Titanium Wire Gr7 Ti-0.2Pd Titanium Sheet ERTi-1 Pure Titanium Welding Wire titanium hexagon rod
没有评论:
发表评论