Titanium plate has the characteristics of low density, high specific strength, and corrosion resistance, and has great potential for application in the automotive industry. The use of titanium and titanium alloys on cars can save fuel, reduce engine noise and vibration, and improve life span. However, for a long time, automotive materials have always been the country for materials such as steel and Al. In order for Ti materials to enter the automotive market, in addition to its own functional advantages, costs must be further reduced to a level acceptable to the automotive industry. Ti titanium plate metallurgical parts for automobiles are a very promising category, but due to the current constraints of cost and other factors, the application and implementation of metallurgical parts are slow. Using leading titanium plate metallurgy technology to prepare Ti titanium plate metallurgical parts can not only greatly reduce the cost, but also help the promotion of Ti and its alloys in the automotive industry, making it another major application after the aerospace industry category. The development of low-cost titanium and its alloy titanium plates can provide low-cost materials for metallurgical parts of titanium and titanium plates for automobiles. Judging from the existing skills, the sponge Ti powder method, the hydrogenation dehydrogenation method and the metal hydride restoration method are mainly suitable for the automobile industry.
1. Sponge Ti powder method
This is currently a way to meet the needs of the automotive industry in terms of cost. The first step is to use the traditional production sponge Ti and the residual material in the process to crush it; the obtained titanium plates are often relatively coarse and rich in content. Cl element. U.S. Huachang Company chooses the gas phase method to introduce TiCl4 and Mg vapors into a tube furnace at 850°C successively to quickly produce fine Ti powder and MgCl2, but it is difficult to separate such fine powder from MgCl2, and the content of O is high; Japan creates one The spray response method sprays the gas onto the liquid Mg to generate particles. The test shows that about 100 grams of Ti powder with a particle size of tens of microns can be prepared for every 100 grams of Mg and 400 grams of TiCl4, and the production power has increased by 2 times. , The cost is reduced by 50%, and it is expected to be used as the material for titanium metallurgical Ti products.
2. Hydrodehydrogenation method
This method is due to the wide planning of the titanium plate size, low cost, less stringent requirements for materials, and easier technology to complete. Through years of improvement and implementation, it has become the primary method for preparing Ti powder at home and abroad. However, the titanium plates prepared by this method tend to have a high content of O, N, etc. The Northwest Research Institute of Nonferrous Metals in China selected hydrogenation and dehydrogenation technology to hydrogenate and dehydrogenate the ingots and produced high-quality titanium plates with low O, N, and Cl. It has outstanding functions and has been able to produce O content of less than 0.20%. Titanium plate has been mass-produced, and it is expected to supply stable titanium plate for metallurgical parts of automobile titanium plate.
3. Metal hydride restoration method
TiCl4 can be restored with hydrogen at 3500°C, and TiO2 can be restored with carbon heat above 1800°C. In order to reduce the reaction temperature, the former Soviet Union scientists proposed to use CaH2 to restore TiO2 and TiCl4, which can be carried out at a temperature of 1100 to 1200 ℃, the reaction generates TiH2, and then de-H to obtain Ti powder. Because this method does not have a Cl element to participate in the reaction, it is possible to obtain a titanium plate with extremely low Cl content. Although the Ti powder produced by this method has a higher H content, it is reported that the presence of a small amount of H is beneficial to the sintering of the titanium plate and the improvement of the microscopic arrangement, and can be completely removed in the subsequent vacuum sintering and annealing process.
thin titanium sheet Titanium Nitride Sputtering Target Grade 1 Titanium Tube titanium powder
thin titanium sheet Titanium Nitride Sputtering Target Grade 1 Titanium Tube titanium powder
没有评论:
发表评论